Honors Calculus Summer Assignment

Directions: All students taking Honors Calculus school year should complete all problems contained in the packet. This material will be covered in the first few weeks of class. You are expected to review all the material enclosed before starting school. During the summer you can email me to ask any questions about the material contained in the packet. I will check my email semi-regularly and will respond when I can. Don't procrastinate and wait until the last week before school starts to begin completing the packet. My email address is mhausman@bwschools.net.

You should be prepared to take a test on the material covered in this packet when you return to school.

Have a great summer!

Honors Calculus Summer Review Problems

Complex Fractions

When simplifying complex fractions, multiply by a fraction equal to 1 which has a numerator and denominator composed of the common denominator of all the denominators in the complex fraction.

Example:

$$\frac{-7 - \frac{6}{x+1}}{\frac{5}{x+1}} = \frac{-7 - \frac{6}{x+1}}{\frac{5}{x+1}} \cdot \frac{x+1}{x+1} = \frac{-7(x+1) - 6}{5} = \frac{-7x - 13}{5}$$

$$\frac{\frac{-2}{x} + \frac{3x}{x-4}}{5 - \frac{1}{x-4}} = \frac{\frac{-2}{x} + \frac{3x}{x-4}}{5 - \frac{1}{x-4}} \cdot \frac{x(x-4)}{x(x-4)} = \frac{-2(x-4) + 3x(x)}{5(x)(x-4) - 1(x)} = \frac{-2x + 8 + 3x^2}{5x^2 - 20x - x} = \frac{3x^2 - 2x + 8}{5x^2 - 21x}$$

Simplify each of the following.

1.
$$\frac{\frac{25}{a}-a}{5+a}$$
 2. $\frac{2-\frac{4}{x+2}}{5+\frac{10}{x+2}}$ 3. $\frac{4-\frac{12}{2x-3}}{5+\frac{15}{2x-3}}$

4.	$\frac{\frac{x}{x+1} - \frac{1}{x}}{\frac{x}{x+1} + \frac{1}{x}}$	5.	$\frac{1-\frac{2x}{3x-4}}{x+\frac{32}{3x-4}}$
	x+1 x		3x - 4

Functions

To evaluate a function for a given value, simply plug the value into the function for x.

Recall: $(f \circ g)(x) = f(g(x)) OR f[g(x)]$ read "*f* of *g* of *x*" means: plug the inside function (in this case g(x)) in for x in the outside function (in this case, f(x)).

Example: Given $f(x) = 2x^2 + 1$ and g(x) = x - 4 find f(g(x)).

f(g(x)) = f(x-4)= 2(x-4)² +1 = 2(x² - 8x + 16) +1 = 2x² - 16x + 32 +1 f(g(x)) = 2x² - 16x + 33

Let f(x) = 2x + 1 and $g(x) = 2x^2 - 1$. Find each.

6. f(2) = 7. g(-3) = 8. f(t+1) =

9.
$$f[g(-2)] =$$
 10. $g[f(m+2)] =$ 11. $\frac{f(x+h) - f(x)}{h} =$

Let $f(x) = \sin x$ Find each exactly.

12. $f\left(\frac{\pi}{2}\right) =$ 13. $f\left(\frac{2\pi}{3}\right) =$

Let $f(x) = x^2$, g(x) = 2x + 5, and $h(x) = x^2 - 1$. Find each.

14. h[f(-2)] = 15. f[g(x-1)] = 16. $g[h(x^3)] =$

Find
$$\frac{f(x+h)-f(x)}{h}$$
 for the given function *f*.
17. $f(x) = 9x+3$ 18. $f(x) = 5-2x$

Intercepts and Points of Intersection

To find the x-intercepts, let y = 0 in your equation and solve. To find the y-intercepts, let x = 0 in your equation and solve. **Example:** $y = x^2 - 2x - 3$ $\frac{x - \text{int. } (Let \ y = 0)}{0 = x^2 - 2x - 3}$ 0 = (x - 3)(x + 1) $x = -1 \ or \ x = 3$ $x - \text{intercepts } (-1, 0) \ and \ (3, 0)$ $\frac{y - \text{int. } (Let \ x = 0)}{y = 0^2 - 2(0) - 3}$ y = -3y - intercept (0, -3)

Find the x and y intercepts for each.

19.
$$y = 2x - 5$$
 20. $y = x^2 + x - 2$

21.
$$y = x\sqrt{16 - x^2}$$
 22. $y^2 = x^3 - 4x$

Use substitution or elimination method to solve the system of equations. Example: $x^2 + y^2 - 16x + 39 = 0$ $x^2 - y^2 - 9 = 0$				
Elimination Method $2x^{2}-16x+30=0$ $x^{2}-8x+15=0$	<u>Substitution Method</u> Solve one equation for one v	variable.		
x - 3x + 15 = 0 (x-3)(x-5) = 0 x = 3 and x = 5 Plug x = 3 and x = 5 into one original	$y^{2} = -x^{2} + 16x - 39$ $x^{2} - (-x^{2} + 16x - 39) - 9 = 0$	(1st equation solved for y) Plug what y ² is equal to into second equation.		
$3^{2} - y^{2} - 9 = 0$ $-y^{2} = 0$ $y^{2} = 0$ $y^{2} = 0$ $y^{2} = 0$ $y^{2} = \pm 4$ Points of Intersection (5,4), (5,-4) and (3,0)	$2x^{2}-16x+30 = 0$ $x^{2}-8x+15 = 0$ (x-3)(x-5) = 0 x = 3 or x-5	(The rest is the same as previous example)		

Find the point(s) of intersection of the graphs for the given equations.

23.	x + y = 8	24	$x^2 + y = 6$		2x - 3y = 5
	4x - y = 7	24.	x + y = 4	23.	5x - 4y = 6

Interval Notation

Solution	Interval Notation	Graph
$-2 < x \le 4$		
	[-1,7)	

-

26. Complete the table with the appropriate notation or graph.

Equation of a line

Slope intercept form: $y = mx + b$	Vertical line: $x = c$ (slope is undefined)
Point-slope form: $y - y_1 = m(x - x_1)$	Horizontal line: $y = c$ (slope is 0)

38. Use slope-intercept form to find the equation of the line having a slope of 3 and a y-intercept of 5.

39. Determine the equation of a line passing through the point (5, -3) with an undefined slope.

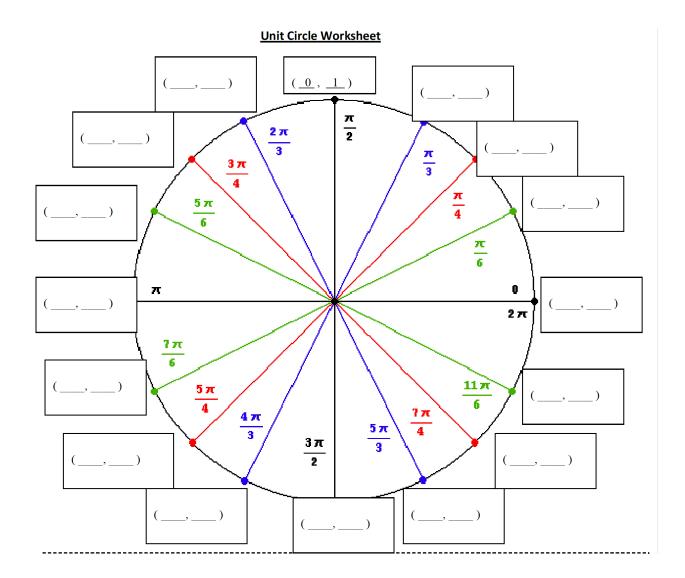
40. Determine the equation of a line passing through the point (-4, 2) with a slope of 0.

41. Use point-slope form to find the equation of the line passing through the point (0, 5) with a slope of 2/3.

42. Find the equation of a line passing through the point (2, 8) and parallel to the line $y = \frac{5}{6}x - 1$.

43. Find the equation of a line perpendicular to the y- axis passing through the point (4, 7).

44. Find the equation of a line passing through the points (-3, 6) and (1, 2).

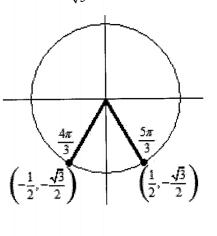

45. Find the equation of a line with an x-intercept (2, 0) and a y-intercept (0, 3).

<u>**Reference Triangles**</u> (If you don't remember how to do this, google "reference triangles")

49. Sketch the angle in standard position. Draw the reference triangle and label the sides, if possible.

c. $-\frac{\pi}{4}$ d. 30°

Trigonometric Equations


We'll have to solve some trigonometric equations incidentally throughout calculus. Here's a quick review on how the unit circle can help solve these equations.

Ex) Solve the equation $\sqrt{3} \cdot \csc x + 2 = 0$ on the interval $[0, 2\pi)$. SOLUTION:

First: Solve for the trig function involved \rightarrow

$$\sqrt{3} \cdot \csc x + 2 = 0$$
$$\sqrt{3} \cdot \csc x = -2$$
$$\frac{\sqrt{3} \cdot \csc x}{\sqrt{3}} = -\frac{2}{\sqrt{3}}$$
$$\csc x = -\frac{2}{\sqrt{3}}$$
$$\csc x = -\frac{2}{\sqrt{3}}$$

If $\csc x = -\frac{2}{\sqrt{3}}$ then this also means $\sin x = -\frac{\sqrt{3}}{2}$ \leftarrow this will help you identify the angles on the unit circle.

Second: Identify the angles which satisfy the equation:

Sine is defined by as the y-coordinates on the unit circle. You're looking for the unit circle angles where the y-coordinate is $-\sqrt{3}/2$.

This happens in two places $x = \frac{4\pi}{3}$ and $x = \frac{5\pi}{3}$.

The solutions are
$$x = \frac{4\pi}{3}$$
 and $x = \frac{5\pi}{3}$.

51. $\cos^2 \theta = 2 + 2\sin \theta$

52. $4\sin^2 \theta + 4 = 5$

50. $3\sin\theta + 2\sin^2\theta = -1$

$$53 \sec^2 \theta - 6 = -4$$

Know these...

Formula Sheet

Reciprocal Identities:	$\csc x = \frac{1}{\sin x}$	$\sec x = \frac{1}{\cos x}$	$\cot x = \frac{1}{\tan x}$		
Quotient Identities:	$\tan x = \frac{\sin x}{\cos x}$	$\cot x = \frac{\cos x}{\sin x}$			
Pythagorean Identities:	$\sin^2 x + \cos^2 x = 1$	$\tan^2 x + 1 = \sec^2 x$	$1 + \cot^2 x = \csc^2 x$		
Double Angle Identities:	$\sin 2x = 2\sin x \cos x$ $\tan 2x = \frac{2\tan x}{1 - \tan^2 x}$		$\cos 2x = \cos^2 x - \sin^2 x$ $= 1 - 2\sin^2 x$ $= 2\cos^2 x - 1$		
Logarithms:	$y = \log_a x$ is equiv	valent to $x = a^{y}$			
Product property:	$\log_b mn = \log_b m + \log_b m + \log_b m + \log_b m + \log_b mn + \log_b m$	g _b n			
Quotient property:	$\log_b \frac{m}{n} = \log_b m - \log_b m$	$s_b n$			
Power property:	$\log_b m^p = p \log_b m$				
Property of equality:	If $\log_b m = \log_b n$, the	en m = n			
Change of base formula:	$\log_a n = \frac{\log_b n}{\log_b a}$				
	. 1				
<u>Slope-intercept form</u> : $y = mx + b$					

- <u>Point-slope form</u>: $y y_1 = m(x x_1)$
- <u>Standard form</u>: Ax + By + C = 0